3.204 \(\int \frac{\sqrt{a+a \cos (c+d x)}}{\cos ^{\frac{7}{2}}(c+d x)} \, dx\)

Optimal. Leaf size=115 \[ \frac{8 a \sin (c+d x)}{15 d \cos ^{\frac{3}{2}}(c+d x) \sqrt{a \cos (c+d x)+a}}+\frac{2 a \sin (c+d x)}{5 d \cos ^{\frac{5}{2}}(c+d x) \sqrt{a \cos (c+d x)+a}}+\frac{16 a \sin (c+d x)}{15 d \sqrt{\cos (c+d x)} \sqrt{a \cos (c+d x)+a}} \]

[Out]

(2*a*Sin[c + d*x])/(5*d*Cos[c + d*x]^(5/2)*Sqrt[a + a*Cos[c + d*x]]) + (8*a*Sin[c + d*x])/(15*d*Cos[c + d*x]^(
3/2)*Sqrt[a + a*Cos[c + d*x]]) + (16*a*Sin[c + d*x])/(15*d*Sqrt[Cos[c + d*x]]*Sqrt[a + a*Cos[c + d*x]])

________________________________________________________________________________________

Rubi [A]  time = 0.165283, antiderivative size = 115, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 2, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.08, Rules used = {2772, 2771} \[ \frac{8 a \sin (c+d x)}{15 d \cos ^{\frac{3}{2}}(c+d x) \sqrt{a \cos (c+d x)+a}}+\frac{2 a \sin (c+d x)}{5 d \cos ^{\frac{5}{2}}(c+d x) \sqrt{a \cos (c+d x)+a}}+\frac{16 a \sin (c+d x)}{15 d \sqrt{\cos (c+d x)} \sqrt{a \cos (c+d x)+a}} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[a + a*Cos[c + d*x]]/Cos[c + d*x]^(7/2),x]

[Out]

(2*a*Sin[c + d*x])/(5*d*Cos[c + d*x]^(5/2)*Sqrt[a + a*Cos[c + d*x]]) + (8*a*Sin[c + d*x])/(15*d*Cos[c + d*x]^(
3/2)*Sqrt[a + a*Cos[c + d*x]]) + (16*a*Sin[c + d*x])/(15*d*Sqrt[Cos[c + d*x]]*Sqrt[a + a*Cos[c + d*x]])

Rule 2772

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp
[((b*c - a*d)*Cos[e + f*x]*(c + d*Sin[e + f*x])^(n + 1))/(f*(n + 1)*(c^2 - d^2)*Sqrt[a + b*Sin[e + f*x]]), x]
+ Dist[((2*n + 3)*(b*c - a*d))/(2*b*(n + 1)*(c^2 - d^2)), Int[Sqrt[a + b*Sin[e + f*x]]*(c + d*Sin[e + f*x])^(n
 + 1), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] &
& LtQ[n, -1] && NeQ[2*n + 3, 0] && IntegerQ[2*n]

Rule 2771

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(3/2), x_Symbol] :> Sim
p[(-2*b^2*Cos[e + f*x])/(f*(b*c + a*d)*Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e + f*x]]), x] /; FreeQ[{a, b,
c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rubi steps

\begin{align*} \int \frac{\sqrt{a+a \cos (c+d x)}}{\cos ^{\frac{7}{2}}(c+d x)} \, dx &=\frac{2 a \sin (c+d x)}{5 d \cos ^{\frac{5}{2}}(c+d x) \sqrt{a+a \cos (c+d x)}}+\frac{4}{5} \int \frac{\sqrt{a+a \cos (c+d x)}}{\cos ^{\frac{5}{2}}(c+d x)} \, dx\\ &=\frac{2 a \sin (c+d x)}{5 d \cos ^{\frac{5}{2}}(c+d x) \sqrt{a+a \cos (c+d x)}}+\frac{8 a \sin (c+d x)}{15 d \cos ^{\frac{3}{2}}(c+d x) \sqrt{a+a \cos (c+d x)}}+\frac{8}{15} \int \frac{\sqrt{a+a \cos (c+d x)}}{\cos ^{\frac{3}{2}}(c+d x)} \, dx\\ &=\frac{2 a \sin (c+d x)}{5 d \cos ^{\frac{5}{2}}(c+d x) \sqrt{a+a \cos (c+d x)}}+\frac{8 a \sin (c+d x)}{15 d \cos ^{\frac{3}{2}}(c+d x) \sqrt{a+a \cos (c+d x)}}+\frac{16 a \sin (c+d x)}{15 d \sqrt{\cos (c+d x)} \sqrt{a+a \cos (c+d x)}}\\ \end{align*}

Mathematica [A]  time = 0.0915232, size = 66, normalized size = 0.57 \[ \frac{2 \left (5 \sin \left (\frac{1}{2} (c+d x)\right )+2 \sin \left (\frac{5}{2} (c+d x)\right )\right ) \sec \left (\frac{1}{2} (c+d x)\right ) \sqrt{a (\cos (c+d x)+1)}}{15 d \cos ^{\frac{5}{2}}(c+d x)} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[a + a*Cos[c + d*x]]/Cos[c + d*x]^(7/2),x]

[Out]

(2*Sqrt[a*(1 + Cos[c + d*x])]*Sec[(c + d*x)/2]*(5*Sin[(c + d*x)/2] + 2*Sin[(5*(c + d*x))/2]))/(15*d*Cos[c + d*
x]^(5/2))

________________________________________________________________________________________

Maple [A]  time = 0.434, size = 64, normalized size = 0.6 \begin{align*} -{\frac{16\, \left ( \cos \left ( dx+c \right ) \right ) ^{3}-8\, \left ( \cos \left ( dx+c \right ) \right ) ^{2}-2\,\cos \left ( dx+c \right ) -6}{15\,d\sin \left ( dx+c \right ) }\sqrt{a \left ( 1+\cos \left ( dx+c \right ) \right ) } \left ( \cos \left ( dx+c \right ) \right ) ^{-{\frac{5}{2}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+cos(d*x+c)*a)^(1/2)/cos(d*x+c)^(7/2),x)

[Out]

-2/15/d*(8*cos(d*x+c)^3-4*cos(d*x+c)^2-cos(d*x+c)-3)*(a*(1+cos(d*x+c)))^(1/2)/sin(d*x+c)/cos(d*x+c)^(5/2)

________________________________________________________________________________________

Maxima [B]  time = 1.58081, size = 320, normalized size = 2.78 \begin{align*} \frac{2 \,{\left (\frac{15 \, \sqrt{2} \sqrt{a} \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} - \frac{25 \, \sqrt{2} \sqrt{a} \sin \left (d x + c\right )^{3}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{3}} + \frac{17 \, \sqrt{2} \sqrt{a} \sin \left (d x + c\right )^{5}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{5}} - \frac{7 \, \sqrt{2} \sqrt{a} \sin \left (d x + c\right )^{7}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{7}}\right )}{\left (\frac{\sin \left (d x + c\right )^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}} + 1\right )}^{3}}{15 \, d{\left (\frac{\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} + 1\right )}^{\frac{7}{2}}{\left (-\frac{\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} + 1\right )}^{\frac{7}{2}}{\left (\frac{3 \, \sin \left (d x + c\right )^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}} + \frac{3 \, \sin \left (d x + c\right )^{4}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{4}} + \frac{\sin \left (d x + c\right )^{6}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{6}} + 1\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))^(1/2)/cos(d*x+c)^(7/2),x, algorithm="maxima")

[Out]

2/15*(15*sqrt(2)*sqrt(a)*sin(d*x + c)/(cos(d*x + c) + 1) - 25*sqrt(2)*sqrt(a)*sin(d*x + c)^3/(cos(d*x + c) + 1
)^3 + 17*sqrt(2)*sqrt(a)*sin(d*x + c)^5/(cos(d*x + c) + 1)^5 - 7*sqrt(2)*sqrt(a)*sin(d*x + c)^7/(cos(d*x + c)
+ 1)^7)*(sin(d*x + c)^2/(cos(d*x + c) + 1)^2 + 1)^3/(d*(sin(d*x + c)/(cos(d*x + c) + 1) + 1)^(7/2)*(-sin(d*x +
 c)/(cos(d*x + c) + 1) + 1)^(7/2)*(3*sin(d*x + c)^2/(cos(d*x + c) + 1)^2 + 3*sin(d*x + c)^4/(cos(d*x + c) + 1)
^4 + sin(d*x + c)^6/(cos(d*x + c) + 1)^6 + 1))

________________________________________________________________________________________

Fricas [A]  time = 1.63991, size = 190, normalized size = 1.65 \begin{align*} \frac{2 \, \sqrt{a \cos \left (d x + c\right ) + a}{\left (8 \, \cos \left (d x + c\right )^{2} + 4 \, \cos \left (d x + c\right ) + 3\right )} \sqrt{\cos \left (d x + c\right )} \sin \left (d x + c\right )}{15 \,{\left (d \cos \left (d x + c\right )^{4} + d \cos \left (d x + c\right )^{3}\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))^(1/2)/cos(d*x+c)^(7/2),x, algorithm="fricas")

[Out]

2/15*sqrt(a*cos(d*x + c) + a)*(8*cos(d*x + c)^2 + 4*cos(d*x + c) + 3)*sqrt(cos(d*x + c))*sin(d*x + c)/(d*cos(d
*x + c)^4 + d*cos(d*x + c)^3)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))**(1/2)/cos(d*x+c)**(7/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{a \cos \left (d x + c\right ) + a}}{\cos \left (d x + c\right )^{\frac{7}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))^(1/2)/cos(d*x+c)^(7/2),x, algorithm="giac")

[Out]

integrate(sqrt(a*cos(d*x + c) + a)/cos(d*x + c)^(7/2), x)